7 Comments
User's avatar
Vikram V.'s avatar

Great post. You should take this periodically to see how things change.

For the continuum hypothesis, my understanding is that it literally has no truth value because both it and its negation are consistent with standard mathematical set theory or seining. But I’m no expert.

Expand full comment
James Reilly's avatar

Did you just refer to Immanuel Kant (1724-1804) as an "ancient philosopher"?

Expand full comment
Bentham's Bulldog's avatar

Yes.

Expand full comment
Both Sides Brigade's avatar

People dispute whether the continuum hypothesis has a definite truth value because both the affirmation and negation of the hypothesis can be shown to be compatible with the basic set axioms out there. So some people who think there are no "further facts" about mathematics beyond the consequences of axioms say it has no truth value, whereas there are Platonists who take the opposite approach and argue ZFC's agnosticism here shows it doesn't fully capture the actual nature of sets. I'm personally undecided but I lean towards the latter view.

Anyway, this is a fun idea! I might try it tonight and see how far I get. I didn't even know they had all these extended questions!

Expand full comment
Noah Birnbaum's avatar

Is 81 a joke I can’t tell?

Expand full comment
Bentham's Bulldog's avatar

No.

Expand full comment
Noah Birnbaum's avatar

Lol only cuz you said exactly 50/50 did I think it was

Expand full comment